Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Genet Mol Biol ; 41(1 suppl 1): 288-307, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29505063

RESUMO

Sisyrinchium is the largest genus of Iridaceae in the Americas and has the greatest amount of cytological data available. This study aimed at investigating how genomes evolved in this genus. Chromosome number, genome size and altitude from species of sect. Viperella were analyzed in a phylogenetic context. Meiotic and pollen analyses were performed to assess reproductive success of natural populations, especially from those polyploid taxa. Character optimizations revealed that the common ancestor of sect. Viperella was probably diploid (2n = 2x =18) with two subsequent polyplodization events. Total DNA content (2C) varied considerably across the phylogeny with larger genomes detected mainly in polyploid species. Altitude also varied across the phylogeny, however no significant relationship was found between DNA content changes and altitude in our data set. All taxa presented regular meiosis and pollen viability (> 87%), except for S. sp. nov. aff. alatum (22.70%), suggesting a recent hybrid origin. Chromosome number is mostly constant within this section and polyploidy is the only source of modification. Although 2C varied considerably among the 20 taxa investigated, the diversity observed cannot be attributed only to polyploidy events because large variations of DNA content were also observed among diploids.

2.
Genet. mol. biol ; 41(1,supl.1): 288-307, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-892491

RESUMO

Abstract Sisyrinchium is the largest genus of Iridaceae in the Americas and has the greatest amount of cytological data available. This study aimed at investigating how genomes evolved in this genus. Chromosome number, genome size and altitude from species of sect. Viperella were analyzed in a phylogenetic context. Meiotic and pollen analyses were performed to assess reproductive success of natural populations, especially from those polyploid taxa. Character optimizations revealed that the common ancestor of sect. Viperella was probably diploid (2n = 2x =18) with two subsequent polyplodization events. Total DNA content (2C) varied considerably across the phylogeny with larger genomes detected mainly in polyploid species. Altitude also varied across the phylogeny, however no significant relationship was found between DNA content changes and altitude in our data set. All taxa presented regular meiosis and pollen viability (> 87%), except for S. sp. nov. aff. alatum (22.70%), suggesting a recent hybrid origin. Chromosome number is mostly constant within this section and polyploidy is the only source of modification. Although 2C varied considerably among the 20 taxa investigated, the diversity observed cannot be attributed only to polyploidy events because large variations of DNA content were also observed among diploids.

3.
Mol Ecol Resour ; 14(2): 324-35, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24119215

RESUMO

DNA barcoding aims to develop an efficient tool for species identification based on short and standardized DNA sequences. In this study, the DNA barcode paradigm was tested among the genera of the tribe Sisyrinchieae (Iridoideae). Sisyrinchium, with more than 77% of the species richness in the tribe, is a taxonomically complex genus. A total of 185 samples belonging to 98 species of Sisyrinchium, Olsynium, Orthrosanthus and Solenomelus were tested using matK, trnH-psbA and internal transcribed spacer (ITS). Candidate DNA barcodes were analysed either as single markers or in combination. Detection of a barcoding gap, similarity-based methods and tree-based analyses were used to assess the discrimination efficiency of DNA barcodes. The levels of species identification obtained from plastid barcodes were low and ranged from 17.35% to 20.41% for matK and 5.11% to 7.14% for trnH-psbA. The ITS provided better results with 30.61-38.78% of species identified. The analyses of the combined data sets did not result in a significant improvement in the discrimination rate. Among the tree-based methods, the best taxonomic resolution was obtained with Bayesian inference, particularly when the three data sets were combined. The study illustrates the difficulties for DNA barcoding to identify species in evolutionary complex lineages. Plastid markers are not recommended for barcoding Sisyrinchium due to the low discrimination power observed. ITS gave better results and may be used as a starting point for species identification.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Iridaceae/classificação , Iridaceae/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genes de Plantas , Dados de Sequência Molecular , Plastídeos/genética , Análise de Sequência de DNA
4.
Ann Bot ; 110(3): 713-29, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22782239

RESUMO

BACKGROUND AND AIMS: Oil-producing flowers related to oil-bee pollination are a major innovation in Neotropical and Mexican Iridaceae. In this study, phylogenetic relationships were investigated among a wide array of New World genera of the tribes Sisyrinchieae, Trimezieae and Tigridieae (Iridaceae: Iridoideae) and the evolution of floral glandular structures, which are predominantly trichomal elaiophores, was examined in relation to the diversification of New World Iridaceae. METHODS: Phylogenetic analyses based on seven molecular markers obtained from 97 species were conducted to produce the first extensive phylogeny of the New World tribes of subfamily Iridoideae. The resulting phylogenetic hypothesis was used to trace the evolutionary history of glandular structures present in the flowers of numerous species in each tribe. Hypotheses of differential diversification rates among lineages were also investigated using both topological and Binary-State Speciation and Extinction methods. KEY RESULTS AND CONCLUSIONS: Floral glandular structures and especially trichomal elaiophores evolved multiple times independently in the American tribes of Iridoideae. The distribution pattern of species displaying glandular trichomes across the phylogeny reveals lability in the pollination system and suggests that these structures may have played a significant role in the diversification of the Iridoideae on the American continent.


Assuntos
Flores/anatomia & histologia , Flores/química , Iridaceae/química , Iridaceae/classificação , Óleos de Plantas/análise , América , Animais , Abelhas , Evolução Biológica , Filogenia , Polinização , Clima Tropical
5.
Genet Mol Biol ; 35(1): 99-105, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22481881

RESUMO

Sisyrinchium micranthum Cav. is a member of the family Iridaceae, which is distributed over the American continent. In Brazil, this species is found, not only in disturbed areas and coastal regions, but is also very common in urban centers, such as public parks, during the spring. Chromosome counts for North American specimens are 2n = 32 and 2n = 48, whereas in southern Brazil, there is a polyploidy series with three chromosome numbers, 2n = 16, 2n = 32, and 2n = 48. Population analyses using DNA molecular markers are inexistent for this species, in spite of its wide distribution and morphological variation. To study the genetic population structure of S. micranthum, five natural populations were accessed in a conservation park within the Atlantic Rain Forest Biome in southern Brazil. Here, the chromosome numbers 2n = 16 and 2n = 48 had already been described. Molecular analysis showed that the populations are highly structured with low gene flow among them. The population with 2n = 48 was genetically less variable than and distinct from the other populations. Population genetics in relation to cytogenetic data provided new insights regarding the genetic diversification and mating system of S. micranthum.

6.
Genet Mol Biol ; 35(4 (suppl)): 1027-35, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23412701

RESUMO

Plants of the family Iridaceae are well represented in the grassland vegetation of southern Brazil, occurring in the Pampa and Atlantic Forest biomes. Nevertheless, little is known about the taxonomy and evolution of Iridaceae species in southern Brazil. The main goal of this review is to compile published information about South American Iridaceae, and to discuss the evolution and genetic diversity of the family presenting our own research data in the light of the published literature. The main focus is on the genera Calydorea, Cypella, Herbertia, and Sisyrinchium. Aspects of reproductive system and of pollinator attraction are also discussed.

7.
Genet. mol. biol ; 35(1): 99-105, 2012. graf, tab
Artigo em Inglês | LILACS | ID: lil-616997

RESUMO

Sisyrinchium micranthum Cav. is a member of the family Iridaceae, which is distributed over the American continent. In Brazil, this species is found, not only in disturbed areas and coastal regions, but is also very common in urban centers, such as public parks, during the spring. Chromosome counts for North American specimens are 2n = 32 and 2n = 48, whereas in southern Brazil, there is a polyploidy series with three chromosome numbers, 2n = 16, 2n = 32, and 2n = 48. Population analyses using DNA molecular markers are inexistent for this species, in spite of its wide distribution and morphological variation. To study the genetic population structure of S. micranthum, five natural populations were accessed in a conservation park within the Atlantic Rain Forest Biome in southern Brazil. Here, the chromosome numbers 2n = 16 and 2n = 48 had already been described. Molecular analysis showed that the populations are highly structured with low gene flow among them. The population with 2n = 48 was genetically less variable than and distinct from the other populations. Population genetics in relation to cytogenetic data provided new insights regarding the genetic diversification and mating system of S. micranthum.


Assuntos
Genética Populacional , Iridaceae , Reação em Cadeia da Polimerase , Sisyrinchium galaxoides
8.
Ann Bot ; 107(8): 1287-312, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21527419

RESUMO

BACKGROUND AND AIMS: Sisyrinchium (Iridaceae: Iridoideae: Sisyrinchieae) is one of the largest, most widespread and most taxonomically complex genera in Iridaceae, with all species except one native to the American continent. Phylogenetic relationships within the genus were investigated and the evolution of oil-producing structures related to specialized oil-bee pollination examined. METHODS: Phylogenetic analyses based on eight molecular markers obtained from 101 Sisyrinchium accessions representing 85 species were conducted in the first extensive phylogenetic analysis of the genus. Total evidence analyses confirmed the monophyly of the genus and retrieved nine major clades weakly connected to the subdivisions previously recognized. The resulting phylogenetic hypothesis was used to reconstruct biogeographical patterns, and to trace the evolutionary origin of glandular trichomes present in the flowers of several species. KEY RESULTS AND CONCLUSIONS: Glandular trichomes evolved three times independently in the genus. In two cases, these glandular trichomes are oil-secreting, suggesting that the corresponding flowers might be pollinated by oil-bees. Biogeographical patterns indicate expansions from Central America and the northern Andes to the subandean ranges between Chile and Argentina and to the extended area of the Paraná river basin. The distribution of oil-flower species across the phylogenetic trees suggests that oil-producing trichomes may have played a key role in the diversification of the genus, a hypothesis that requires future testing.


Assuntos
Abelhas/fisiologia , Evolução Biológica , Flores/metabolismo , Iridaceae/classificação , Iridaceae/genética , Óleos de Plantas/metabolismo , Animais , Teorema de Bayes , DNA de Plantas/química , DNA de Plantas/genética , Genes de Plantas/genética , Geografia , Iridaceae/metabolismo , Funções Verossimilhança , Mitocôndrias/genética , América do Norte , Filogenia , Plastídeos/genética , Polinização , Alinhamento de Sequência , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...